Abstract
Ferromagnetic resonance (FMR) spectroscopy is a powerful technique to study the precessional dynamics of magnetization in thin film heterostructures. It provides valuable information about the mechanisms of exchange bias, spin angular momentum transfer across interfaces, and excitation of magnons. A key desirable feature of FMR spectrometers is the capability to study magnetization dynamics over a wide phase space of temperature (T), frequency (f), and magnetic field (B). The design, fabrication, and testing of such a spectrometer, which uses frequency modulation techniques for improved detection of microwave absorption, reduces heat load in the cryostat and allows simultaneous measurements of inverse spin Hall effect (ISHE) induced dc voltages, is described in this paper. The apparatus is based on a 2-port transmitted microwave signal measurement using a grounded co-planar waveguide. The input radio frequency (RF) signal, frequency modulated at a tunable f-band, excites spin precession in the sample, and the attenuated RF signal is measured phase sensitively. The sample stage, inserted in the bore of a superconducting solenoid, allows magnetic field and temperature variability of 0 to ±5T and 2-310K, respectively. We demonstrate the working of this Cryo-FMR and ISHE spectrometer on thin films of Ni80Fe20 and Fe60Co20B20 over a wide T, B, and f phase space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.