Abstract

A new terahertz isolator based on the ferromagnetic resonance effect is suggested and analyzed. A two-dimensional photonic crystal consisting of a square lattice of gallium arsenide rods has been employed in the design of the device. Incident electromagnetic waves interact with one magnetized ferrite rod and two stubs inserted in the photonic crystal structure, generating a vortex-like field profile in the ferrite rod. Electromagnetic signals propagating in the forward direction are transmitted with low insertion losses, while their propagation in the backward direction is not allowed due to the high losses of the ferrite rod operating at the ferromagnetic resonance regime. Computational simulations show that the operating bandwidth is equal to 0.87 GHz around the central frequency 106.6 GHz. In this frequency band, the insertion losses are lower than − 1.68 dB, the reflection levels are better than − 16 dB, and the isolation levels are greater than − 15 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.