Abstract
The spin-1/2 Heisenberg model is formulated in terms of a mean-field approximation (MFA) by using the matrix forms of spin operators Ŝx, Ŝy and Ŝz in three-dimensions. The considered Hamiltonian consists of bilinear exchange interaction parameters (Jx, Jy, Jz), Dzyaloshinskii-Moriya interactions (Δx, Δy, Δz) and external magnetic field components (Hx, Hy, Hz). The magnetization and its components are obtained in the MFA with the general anisotropic case with Jx ≠ Jy ≠ Jz for various values of coordination numbers q. Then, the thermal variations of magnetizations are investigated in detail to obtain the phase diagrams of the model for the isotropic case with Jx = Jy = Jz > 0. It is found that the model exhibits ferromagnetic, paramagnetic, random phase regions and an extra ferromagnetic phase at which the components of magnetizations present branching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.