Abstract

We study the equilibrium domain structure and magnetic flux around a ferromagnetic (FM) film with perpendicular magnetization M_0 on a superconducting (SC) substrate. At 4{\pi}M_0<H_{c1} the SC is in the Meissner state and the equilibrium domain width in the film, l, scales as (l/4{\pi}{\lambda}_{L}) = (l_{N}/4{\pi}{\lambda}_{L})^{2/3} with the domain width on a normal (non-superconducting) substrate, l_{N}/4\pi\lambda_L >> 1. Here \lambda_L is the London penetration length. For 4{\pi}M_0 > H_{c1} and l_{N} in excess of about 35 {\lambda}_{L}, the domains are connected by SC vortices. We argue that pinning of vortices by magnetic domains in FM/SC multilayers can provide high critical currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.