Abstract

Temperature dependences of the magnetization (ferromagnetic) and the staggered magnetization (antiferromagnetic) are analyzed for various ferromagnetic (FM) and antiferromagnetic (AF) phases of the layered structure of La0.6Nd0.4Mn2Si2 using the experimental data at a constant magnetic field of 50Oe. For this analysis, a mean field model with the quadratic coupling between the magnetization (FM) and the staggered magnetization (AF) is considered and the expressions derived from the mean field model for the magnetization and the staggered magnetization, are fitted to the experimental data.Our results indicate that the quadrupole–quadrupole interactions for the ferromagnetic and antiferromagnetic spin configurations play a dominant role to describe the ferromagnetic and antiferromagnetic properties of the layered structure of La0.6Nd0.4Mn2Si2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.