Abstract

The spin field-effect transistor, an essential building block for spin information processing, shows promise for energy-efficient computing. Despite steady progress, it suffers from a low-output signal because of low spin injection and detection efficiencies. We demonstrate that this low-output obstacle can be overcome by utilizing direct and inverse spin Hall effects for spin injection and detection, respectively, without a ferromagnetic component. The output voltage of our all-electric spin Hall transistor is about two orders of magnitude larger than that of previously reported spin transistors based on ferromagnets or quantum point contacts. Moreover, the symmetry of the spin Hall effect allows all-electric spin Hall transistors to effectively mimic n-type and p-type devices, opening a way of realizing the complementary functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.