Abstract

Hybrid organic-inorganic perovskites (HOIPs) afford highly versatile structure design and lattice dimensionalities; thus, they are actively researched as material platforms for the tailoring of ferroic behaviors. Unlike single-phase organic or inorganic materials, the interlayer coupling between organic and inorganic components in HOIPs allows the modification of strain and symmetry by chirality transfer or lattice distortion, thereby enabling the coexistence of ferroic orders. This review focuses on the principles for engineering one or multiple ferroic orders in HOIPs, and the conditions for achieving multiferroicity and magnetoelectric properties. The prospects of multilevel ferroic modulation,chiral spin textures,and spin orbitronics in HOIPs are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.