Abstract

AbstractMetal halide perovskites (MHPs) as one of the most active materials gained tremendous attention in the past decade because of their outstanding performance in optoelectronics. Owing to their perovskite structure, ferroelectricity is anticipated in this class of materials. However, whether MHPs are ferroelectric or not remains elusive. Recently, discussion regarding ferroelasticity in MHPs has been also raised. In addition, ionic motion and structural dynamics are well known in MHPs. The interplay of these phenomena including electric polarization, strain, ionic motion, and structural dynamics can have a significant impact on optoelectronics. Therefore, understanding the mechanism behind these phenomena and their interactions is critical in addressing the controversy about ferroicity of MHPs and developing functional devices. Here, the current findings about MHP's ferroicity are summarized and evaluated and a perspective for the future is provided. It is suggested that ionic motion and associated phenomena, coupled with ferroic behavior, are the main drivers behind MHPs functionality. The challenges are also discussed in probing MHPs’ ferroicity and what new measurement modalities are needed to fully understand and characterize MHP behavior. Finally, it is discussed how ferroic and strain can affect the optoelectronic performance of MHPs and how they can be used for engineering of higher performance devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.