Abstract

The switchability between the two ferroelectric (FE) states of an FE material makes FEs widely used in memories and other electronic devices. However, for conventional FEs, its FE switching only occurs between the two FE states whose spatial inversion symmetry is broken. The search for FE materials is therefore subject to certain limitations. We propose a new type of FEs whose FE states still contain spatial inversion centers. The change in polarization of this new type of FEs originates from electronic transfer between two centrosymmetric FE states under an external electric field. Taking BaBiO3 as an example, we show that charge-ordering systems can be a typical representative of this new type of FEs. Moreover, unlike traditional ferroelectrics, the change in polarization in this new type of FEs is quantum in nature with the direction dependent on the specific FE transition path. Our work therefore not only extends the concept of FEs but may also open up a new way to find multiferroics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call