Abstract

The discovery of high temperature superconductivity in layered systems has evoked a heated discussion about the microscopic electron (hole) pairing mechanism. In particular, the proximity of these systems to magnetic phases has been taken as evidence for a purely electronic mechanism. However, structural anomalies and unconventional isotope effects suggest that the lattice plays a crucial role and must be incorporated in modeling the mechanism. Here we show that polarizability effects and Jahn-Teller centers are of special importance, since these enable dynamical charge transfer, interband interactions, polaron and bipolaron formation. In this respect the layered superconductors approach ferroelectrics, where dynamical covalency is known to trigger the structural instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.