Abstract

Two-dimensional (2D) ferroelectric (FE) systems are promising candidates for non-volatile nanodevices. Previous studies mainly focused on 2D compounds. Though counter-intuitive, here we propose several new phases of tellurium with (anti)ferroelectricity. Two-dimensional films can be viewed as a collection of one-dimensional chains, and lone-pair instability is responsible for the (anti)ferroelectricity. The total polarization is determined to be 0.34 × 10−10 C/m for the FE ground state. Due to the local polarization field in the FE film, we show a large Rashba splitting (α R ∼ 2 eV⋅Å) with nonzero spin Hall conductivity for experimental detection. Furthermore, a dipole-like distribution of Berry curvature is verified, which may facilitate a nonlinear Hall effect. Because Rashba-splitting/Berry-curvature distributions are fully coupled with a polarization field, they can be reversed through FE phase transition. Our results not only broaden the elemental FE materials, but also shed light on their intriguing transport phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call