Abstract

Enhanced ferroelectric properties of nanoscale ZrO2 thin films by an HfO2 seed layer are demonstrated in metal-ferroelectric-semiconductor (Si) capacitors and transistors prepared with a low thermal budget of 400 °C. The seeding effect of the HfO2 layer leads to the enhancement of crystallization into the orthorhombic phase and the increase of remnant polarization of the sub-10 nm ZrO2/HfO2 bilayer structure. The ferroelectric field-effect transistor with the ZrO2/HfO2 bilayer gate stack reveals a large memory window of ~1.2 V and a steep subthreshold swing below 60 mV/decade. As compared with the Hf0.5Zr0.5O2 thin film, superior ferroelectric properties of the ZrO2/HfO2 bilayer structure show great potential for ferroelectric memory devices fabricated on Si substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.