Abstract

Ferroelectric materials have set in motion numerous ultralow-energy-consuming device concepts that can be integrated into state-of-the-art complementary metal–oxide–semiconductor technology. Their nonvolatile, spontaneous electric polarization makes them promising candidates to control functionalities at the nanoscale with energy-efficient electric fields only. In this spotlight article, we start with a brief introduction to ferroelectric materials, the challenges involving the design of thin films and review the state-of-the-art of their integration into various electronic applications. Revolutionary in situ and operando diagnostic tools allowing the monitoring of the technology-relevant polarization state during the material design, or its operation will be detailed. Concepts such as chiral states in ferroelectrics and neuromorphic-type switching will be addressed to provide a comprehensive view on the evolution of ferroelectric states for the next generation of low-energy-consuming electronics. Finally, we discuss the most recent developments in the field, including the emergence of ferroelectricity at the nanoscale and in two-dimensional systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.