Abstract

ABSTRACT A two-dimensional electromagnetic bandgap structure has been developed using ferroelectric thin-films. Using lumped inductors and parallel plate capacitors a planar structure is developed which creates a bandgap in the 20–40 GHz range, as demonstrated by experimental results. The ferroelectric material Ba0.6Sr0.4TiO3 (BST) is used in the form of a thin-film between patterned layers of gold to form capacitors on a 500 μm thick high-resistivity Si substrate. A meander line based design is used to form the two-dimensional surface which provides biasing pathways to the varactors. The concept is simulated and experimentally verified using a coplanar waveguide based device in which the EBG surface is used as the ground plane. Designs are also presented for the development of a biasing network to take advantage of the non-linear tunability of the BST dielectric constant in order to make the surface tunable. Experiments used both sputtered and PLD BST films with a maximum bandgap depth of 35 dB. Potential applications are in the area of frequency selective surfaces, and high-impedance ground planes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.