Abstract

This review covers the fabrication and characterization of ferroelectric/superconductor heterostructures such as Pb(ZrxTi1−x)O3/YBa2Cu3O7−δ (YBCO), BaTiO3/YBCO and BaxSr1−xTiO3/YBCO etc. on various single crystal substrates. Pulsed laser deposition, laser molecular beam epitaxy, and magnetron-sputtering methods are compared. This report shows that pulsed laser deposition equipped with in situ reflection high-energy electron diffraction is a good method to control the growth mode of YBCO thin films. Furthermore, laser molecular beam epitaxy is a superb method for research of complex oxide films and their superlattices. Atomic force microscopy and transmission electron microscopy showed the ferroelectric films grown on the rough surface of the YBCO films produced high-density planar defects in the film and is detrimental to the ferroelectric/dielectric properties of the heterostructures. Therefore, for device usage, it is more advantageous to use SrRuO3 than YBCO as the bottom electrode material. For growing atomically smooth surface films step-flow mode is highly recommended. Prospects of microwave device application of the ferroelectric/superconductor heterostructures are discussed, and proposed the BSTO films as the best candidate for passive microwave components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call