Abstract

Since the discovery of the first ferroelectric liquid crystal (FLC) in the chiral smectic C (SmC*) phase, ferroelectricity in liquid crystals has attracted much attention due to not only the fundamental interest but also the applications. This review focuses on the evolution of the design concept for ferroelectric smectic liquid crystals. It progresses from considering macroscopic phase symmetry to designing intermolecular interactions. For the purpose of understanding the molecular organization in smectic phases, we propose a dynamic model of constituent molecules in the smectic A (SmA) and SmC* phases based on 13C NMR studies. Then, we follow the structure–property relationship in ferroelectric SmC* liquid crystals for FLC displays. We reconsider de Vries-like materials that can provide defect-free alignment. We pay attention to the electro-optical switching in the chiral de Vries smectic A phase. Finally, we show several liquid crystals exhibiting polar smectic A phases and discuss how the polar order occurs in the highest symmetric smectic A phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.