Abstract

AbstractA‐site substituted 0.88(Bi0.5Na0.5)1−x(Li0.5Nd0.5)xTiO3–0.12BaTiO3 (BNTLNx–BT12) ceramics were synthesized using a conventional solid‐state reaction route. The structural transformation and miscellaneous electrical properties were systematically investigated. The A‐site modification induced two sequence transitions from ferroelectric tetragonal (T) to quasi‐ferroelectric pseudocubic (PC) phase, followed closely by the second transition from non‐ergodic to ergodic relaxor (NR‐ER), and finally to dynamic polar nanoregions (PNRs). The significant enhancement in piezoelectric activity, strain response, broad plateau‐like maximum dielectric permittivity over a large temperature range and energy‐storage level at different compositions may be attributed to the compositionally‐induced T‐PC to NR‐ER transition and the alignment of dynamically‐fluctuating PNRs, respectively. The evolution of multifunctional electrical properties, associated with the variations in structure/microstructure, might provide a new insight to investigate the underlying mechanism of structure‐electrical properties relationship in ferroelectric solid solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.