Abstract

Bismuth-layered ferroelectric thin films of Sr1−xAxBi2Ta2O9, with composition x=0 and 0.2, were fabricated by using the pulsed-laser deposition technique. Structural characterization of the films by x-ray diffraction and atomic force microscopy, revealed that the films are polycrystalline in nature with average grain size of 180 nm. The films displayed spherical grains with a surface roughness of 12 nm. The ferroelectric measurements of Sr0.8Ba0.2Bi2Ta2O9, SrBi2Ta2O9, and Sr0.8Ca0.2Bi2Ta2O9 showed saturated hysteretic behavior with remanent polarization (2Pr) of 23.5, 17.9, 14 μC/cm2 and coercive field (Ec) of 31.06, 74.2, 86.3 kV/cm for a maximum applied electric field of 360 kV/cm. Films exhibited minimal (⩽17%) degradation of polarization for up to 1010 switching cycles. It was observed that the coercive field decreased with increase in the ionic size of partially substituted cations. The leakage current density of films were found to be of the order of ∼10−8 A/cm2 for up to a breakdown field of about 75 kV/cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.