Abstract

In this work, we report the concept and experimentally demonstrate the first tunable ferroelectric (Fe) junctionless (JL) transistor (Fe-JLFET), capable of emulating the functionality of biological tri-partite synapses, which is an artificial three-terminal synapse with unique back gate high tuning of the post-synaptic current (PSC). Our device consists of a double-gate 11nm-thin film Fe-JLFET with 10nm Si-doped HfO textsubscript 2 ferroelectric, mimicking the functionality of a tripartite synapse. The gradual ferroelectric switching is exploited to fully reproduce the synaptic plasticity. The back-gate voltage emulates the function of an astrocyte, being used to tune the synaptic weight by more than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$400\times $ </tex-math></inline-formula> . Compared to other implementations, the newly proposed tripartite Fe-JLFET synapse device shows simplicity in fabrication, extended programmability, and robustness. We report plasticity until 2000 cycles of operation. Overall, this device concept is promising for CMOS-compatible energy-efficient implementation of future neuromorphic ICs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.