Abstract

Hafnium oxide (HfO2)‐based ferroelectric field effect transistors (FeFETs) revolutionize the emerging nonvolatile memory area, especially with the potential to replace flash memories for several applications. In this article, the suitability of FeFET memories is investigated, especially FeFET‐based content addressable memory (CAM) cells, as storage‐class memory under junction temperature variations. FeFETs with silicon oxynitride interfacial layer are fabricated and characterized at various temperatures, varying from room temperature to 120 °C. Although the memory window, numbers of programmable states, and endurance deteriorate at high temperatures, FeFETs show excellent robustness in data retention, write latency, and read stability at all temperatures, especially for binary operation. Finally, system‐level simulations using a Simulation Program with Integrated Circuit Emphasis software using experimental data are conducted to gauge the robustness of the data‐search operation using the CAM array under different temperatures. Despite temperature‐variation‐induced changes in FeFET devices, it is observed that binary CAM cells perform robust and unerring search operations for storing and searching data at temperatures up to 120 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.