Abstract

The study of the properties of ferroelectric materials against irradiation has a long history. However, anti−irradiation research on the ferroelectric domain has not been carried out. In this paper, the irradiation of switched domain structure is innovatively proposed. The switched domain of 700 nm lithium niobate (LiNbO3, LN) thin film remains stable after gamma irradiation from 1 krad to 10 Mrad, which was prepared by piezoresponse force microscopy (PFM). In addition, the changing law of domain wall resistivity is explored through different sample voltages, and it is verified that the irradiated domain wall conductivity is still larger than the domain. This domain wall current (DWC) property can be applied to storage, logic, sensing, and other devices. Based on these, a ferroelectric domain irradiation resistance model is established, which explains the reason at an atomic level. The results open a possibility for exploiting ferroelectric materials as the foundation in the application of space and nuclear fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.