Abstract

Abstract Dielectric behavior in paracrystalline poly(vinyl trifluoroacetate) was investigated from the viewpoint of ferroelectricity. This polymer has a large CF3 dipole moment (2.3 Debye) and structural defects due to the atactic sequence in its chain conformation. It is possible to rotate the dipoles in paracrystals with defects under high electric field. The dielectric behavior was measured from 20 to 200 °C. A large dielectric constant and dielectric relaxation strength (Δε = 17 at 110 °C) were observed in the α-relaxation region. Corona poling on the samples was carried out at DC field 80 MV/m and 80 °C. Ferroelectric D–E hysteresis loop was observed under high electric field, and the remanent polarization and coercive field at 40 °C were 15 mC/m2 and 155 MV/m, respectively. Pyroelectric response and thermally stimulated current were measured from the current through the electrode irradiated by a pulsed semiconductor laser. A pyroelectric constant of about 6 μC/m2K was observed, which was stable up to near the poling temperature. The ferroelectricity in poly(vinyltrifluoroacetate) stems from the rotation of molecular chains in its paracrystals and orientation of the CF2 dipoles. Poly(vinyltrifluoroacetate) dielectrics can be used for capacitors with high power density, artificial skins, muscles and other flexible electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call