Abstract

Nanocrystalline multiferroic BiFeO3 ceramics was prepared by a novel solution combustion method (SCM). The X-ray diffraction (XRD) studies on structural properties of the synthesized ceramics reveal that the BiFeO3 ceramics has rhombhohedral perovskite structure with an average crystallite size of 15 nm. The ferroelectric P-E hysteresis loop measurement at room temperature shows unsaturated behavior with a partial reversal of polarization. Investigations on temperature dependence of dielectric constant in BiFeO3 demonstrate a clear dielectric anomaly at approximately around 380 °C, which corresponds to antiferromagnetic to paramagnetic phase transition (TN) and also evidences a possible coupling among the electric and magnetic dipoles of BiFeO3. A room temperature variation of dielectric constant “ɛ” and dielectric loss “tan δ” as a function of frequency in the range of 100 Hz — 1 MHz, confirms that both dielectric constant and loss are strong functions of frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call