Abstract

Three-dimensional (3D) X-ray diffraction methods were used to analyze the evolution of the load-induced rearrangements of monoclinic twin microstructures within bulk nickel–titanium specimens in 3D and across six orders of magnitude in length scales: changes in lattice plane spacings and orientations at the nanoscale, growth and nucleation of martensite twin variants at the microscale, and localization of plastic strain into deformation bands at the macroscale. Portions of the localized deformation bands were reconstructed in situ and in 3D. Analyses of the data elucidate the sequence of twin rearrangement mechanisms that occur within the propagating localized deformation bands, connect these mechanisms to the texture evolution, and reveal the effects of geometrically necessary lattice curvature across the band interfaces. The similarities between shear bands and localized deformation bands in twin reorientation are also discussed. These findings will guide future researchers in employing twin rearrangement in novel multiferroic technologies, and they demonstrate the strength of 3D, multiscale, in situ experiments to improve our understanding of complicated material behaviors and to provide opportunities to advance our abilities to model them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.