Abstract
To increase the reliability of multilayer actuators, calculation of the mechanical stress inside the device during operation is important. This paper shows that the small‐signal value of the elastic constant s is not sufficient to describe the complicated behavior of lead zirconate titanate (PZT) ceramics. Therefore, compressive strain and depolarization have been measured as a function of large‐signal stress applied parallel to the poling direction. The nonlinear dependence of the strain and depolarization can clearly be explained by domain processes. Soft and hard PZT ceramics have been investigated. In hard PZT, domain switching appears at higher stresses than in soft PZT. Moreover, in hard PZT, the domains partly switch back during unloading. The critical stress (coercive stress) necessary for a domain‐switching process shows a dependence on the Zr:Ti ratio that is quite similar to the dependence of the electric coercive field. The influence of an electric field applied parallel to the poling direction and superimposed on the compression experiment also has been examined. The coercive stress depends linearly on the electric field. The linear coefficient of this relation is given by the ratio of depolarization to compressive strain caused by domain switching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.