Abstract

Ferroelectric materials have been widely studied for applications in numerous devices due to their controllable ferroelectric/ferroelastic properties under electric field or mechanical stress. Recently, a type of bismuth layer-structured ferroelectrics, W/Cr co-doped BIT ceramics, has attracted much attention due to its high Curie temperature, large spontaneous polarization, and particularly enhanced ferroelectric properties. Nevertheless, as a significant consideration for the reliability and durability of devices, the mechanical properties associated with ferroelastic behaviors of this type of ceramics are generally ignored. In this study, a type of W/Cr co-doped BIT ceramics with optimal chemical composition of Bi4Ti2·95W0·05O12.05+0.2 wt% Cr2O3 (BTWC) was synthesized via the solid-reaction technology. Ferroelastic domain structures and ferroelastic switching behaviors together with mechanical failure properties of the sintered ceramics were investigated in details. PFM observations reveal the existence of pseudo-90° and -180° ferroelastic domain structures in BTWC ceramics. The nonlinear deformation of stress-strain curve originates from ferroelastic domain switching induced by mechanical stress of sufficient magnitude. Moreover, the ferroelastic switching plays a significant role in improving the fracture toughness of BTWC ceramics. Additionally, the ceramics sintered at higher temperature are expected to exhibit a better ferroelastic switching behavior yet lower failure stress. The work can provide design consideration of loading conditions for practical applications of BTWC ceramics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call