Abstract

Twenty‐eight novel ferrocenyl ionic compounds, composed of mononuclear 1‐ferrocenylmethylalkyldimethylammoniums, 1‐ferrocenylmethyl‐3‐alkylimidazoliums, or their dinuclear analogs and [Fe(CN)6]3– anion, were designed and synthesized to tackle significant volatility and migration tendency of ferrocene‐based burning rate catalysts (BRCs) used currently in the composite solid propellants. The new compounds were characterized by UV/Vis, FT‐IR, and elementary analysis. The crystal structures of compounds 2·5H2O and 3·CH2Cl2·4H2O verified the successful preparation of the desired ionic compounds. The TG tests at 70 °C for 24 h revealed that the new compounds exhibit lower volatility than catocene. The cyclic‐voltammetry results suggested that new compounds are quasi‐reversible or irreversible redox systems. TheTG/DSC analyses exhibited that the compounds are of highly thermal stability. Their catalytic effects on the thermal degradation of ammonium perchlorate (AP), 1,3,5‐trinitro‐1,3,5‐triazacyclohexane (RDX), and 1,3,5,7‐tetranitro‐1,3,5,7‐tetrazacyclooctane (HMX) were investigated. The results showed that most of the compounds exert great effects on the thermal degradation of AP and RDX during combustion. 11 and 2 are comparable to catocene in the thermal decomposition of AP and RDX, respectively, and can therefore be used as alternatives of catocene in a composite solid propellant. Some new compounds are unexpectedly active in promoting the thermal disintegration of HMX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.