Abstract
A novel nonphosphorus copolymer poly((3,3′-diphenyl diacetylethylenediamino)-1,1′-ferrocene) (PDPFDE) was synthesized, with the aim of reducing the fire hazards of epoxy resin (EP), via an aza-Michael addition reaction and was well characterized. A high char yield of about 62.9 wt % was obtained for PDPFDE from thermogravimetric analysis results, and a charring mechanism has been suggested that involves iron-cored carbon nanotubes as catalysts. An EP composite containing 5.0 wt % PDPFDE reached a low limiting oxygen index value of 29.1% and V-1 rating in the UL-94 test. On comparison with neat EP, the peak of the heat release rate and the total smoke production of the composite were reduced by 36.0% and 24.0%, respectively. Scanning electron microscopy and energy dispersive X-ray analysis results indicated the formation of coherent, dense, and nitrogen-rich char residues due to the incorporation of PDPFDE. Furthermore, the addition of an appropriate amount of PDPFDE improved the mechanical properties comp...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.