Abstract

The robust, irreversible adsorption of omega-ferrocene hexanethiolate-protected gold nanoparticles (composition ca. {Au(225)(SC6Fc)(43)}) on electrodes provides an opportunity to investigate their submonolayer and monolayer films in nanoparticle-free solutions. Observations of nanoparticle adsorption on unmodified electrodes are extended here to Au electrodes having more explicitly controlled surfaces, namely self-assembled monolayers (SAMs) of alkanethiolates with omega-sulfonate, carboxylate, and methyl termini, and in different Bu(4)N(+)X(-) electrolyte (X(-) = C(7)H(7)SO(3)(-), ClO(4)(-), CF(3)SO(3)(-), PF(6)(-), NO(3)(-)) solutions in CH(2)Cl(2). The nanoparticle surface coverage (Gamma(NP)) and the stability of the adsorbed nanoparticle film to repeated ferrocene/ferrocenium redox cycling decrease in the order of sulfonate > carboxylate > methyl terminated SAM, with increasing hydrophobicity of X(-) and with increasing alkyl chain length. The results are consistent with the proposal that the strong surface adsorption is jointly associated with the polyfunctional character of the nanoparticles, analogous to entropically driven adsorptions of polymeric ions on charged surfaces, and with lateral, ion-bridged nanoparticle-nanoparticle interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.