Abstract

A theoretical study of a squeezing ferro-nanofluid flow including thermal effects is carried out with application to bearings and articular cartilages. A representational geometry of the thin layer of a ferro-nanofluid squeezed between a flat rigid disk and a thin porous bed is considered. The flow behaviours and heat transfer in the fluid and porous regions are investigated. The mathematical problem is formulated based on the Neuringer–Rosensweig model for ferro-nanofluids in the fluid region including an external magnetic field, Darcy law for the porous region and Beavers–Joseph slip condition at the fluid–porous interface. The expressions for velocity, fluid film thickness, contact time, fluid flux, streamlines, pathlines, mean temperature and heat transfer rate in the fluid and porous regions are obtained by using a perturbation method. An asymptotic solution for the fluid layer thickness is also presented. The problem is also solved by a numerical method and the results by asymptotic analysis, perturbation and numerical methods are obtained assuming a constant force squeezing state and are compared. It is shown that the results obtained by all the methods agree well with each other. The effects of various parameters such as Darcy number, Beavers–Joseph constant and magnetization parameter on the flow behaviours, contact time, mean temperature and heat transfer rate are investigated. The novel results showing the impact of using ferro-nanofluids in the two applications under consideration are presented. The results under special cases are further compared with the existing results in the literature and are found to agree well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call