Abstract

We demonstrate the production of low-dimensional carbon nanomaterials using a solution plasma system and their application to flexible conductive paper. The solution plasma system consists of two graphite electrodes and a beaker filled with ferritin-mixed deionized water. Ferritin molecules are used as the growth catalyst of the carbon nanomaterials. A high voltage of 15 kV at a frequency of 25 kHz is supplied to the electrodes using an alternating-current power source. The effects of the graphite rod diameters and the concentration of ferritin molecules are comparatively investigated. The produced carbon nanomaterials are characterized using Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. We confirmed the synthesis of graphitic platelets, onion-like structures, and carbon nanotubes. Finally, we fabricated flexible conductive papers using the produced materials with a good electrical conductance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.