Abstract
Heat-shock avian reticulocytes exhibit enhanced synthesis of a greater than 450-kDa protein. Biochemical, immunochemical, and visual criteria were used to identify this protein as the iron storage protein ferritin. The 21-kDa ferritin subunits synthesized during heat shock are similar in size and pI to the subunits that are constitutively synthesized. The 2-6-fold heat shock-induced increase in ferritin synthesis appears to be regulated at the translational level as it is insensitive to actinomycin D. Northern and dot-blot hybridization analyses of cytoplasmic RNAs with avian H-ferritin cDNA fragments support the contention that the heat shock stimulation of ferritin synthesis is translationally regulated. These latter studies demonstrate that the heat shock-induced synthesis of ferritin does not involve a change in the amount of total cytoplasmic ferritin mRNAs, but rather appears to entail a translocation of cytoplasmic H-ferritin mRNAs from a polyribosome-free, translationally repressed state to a polyribosome-associated, translationally active state. These results suggest that thermally stressed avian reticulocytes have a critical and functional need for the synthesis of additional ferritin and that its enhanced synthesis, unlike the new and/or enhanced synthesis of the well-established avian heat shock proteins, is regulated wholly at the translational level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.