Abstract

The influence of the microsegregation of Mn, Si, and Cr on the austenite decomposition during isothermal transformations in hot rolled medium carbon steel has been studied by neutron depolarisation, electron probe microanalysis (EPMA), and optical microscopy. Eight specimens of the same alloy were held at 1173 K for 30 min and were rapidly cooled to different isothermal transformation temperatures. Two-dimensional EPMA maps of the specimen annealed at 1013 K showed that microsegregation of alloying elements in hot rolled steel is strongly related to the ferrite/pearlite band formation. The local variations in alloying element concentration lead to variations in local transition temperatures, which were calculated with the thermodynamic database MTDATA. Similar EPMA maps for the specimen transformed at 953 K demonstrate the presence of microchemical bands, while optical microscopy reveals the absence of microstructural bands. It is shown that the formation of microchemical bands is a prerequisite for band formation, but that the kinetics of the phase transformation determines the actual formation of microstructural bands. A quantitative model has been developed, which describes the observations in terms of the relative difference between ferrite nucleation rates in regions with a high and low local undercooling and the subsequent growth of the ferrite. The isothermal transformation experiments have led to generalised nucleation and growth criteria for the formation of microstructural bands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.