Abstract

Inverse micelles and organogels provide novel environments to synthesize ferrite particles. The fluid microstructure provides a template for the synthesis. Our experiments with ferrite synthesis in inverse micelles indicate the formation of superparamagnetic nanoparticles. Of interest is the encapsulation of these particles in polymer microspheres. The encapsulation is done using simple polymer precipitation in the micellar nonsolvent. The process results in a polymer-ferrite composite exhibiting supermagnetism. Low temperature spin glass properties of the composite are characterized through SQUID measurements. These composites have a superparamagnetic blocking temperature of 16 K and follow Curie–Weiss law at temperatures above 60 K with the fitted parameters: C=0.941 emu/g K, θ=−287 K, and TIP=0.0001 emu/g. Since the polymer used is polyphenol, a highly functionalizable material, the composite is well suited for applications in magnetic bioseparations and magnetic coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.