Abstract

Tailoring diverse characteristics of nanostructured cellulose acetate (CA) membranes by incorporating nanocomposite-tubes ZFS composed of zinc ferrites decorated over single walled carbon nanotubes (SCNTs) for desalination application, is presented in the current research. In situ coprecipitated route is adopted to synthesize ZFS composite filler that imparts morphological, structural, and thermal modifications in CA membranes. Phase inversion via immersion precipitation route has been adopted to synthesis mixed matrix membranes. Microstructural analysis divulges pore size tuning from 1µm to 5nm by increasing loading content of infused filler (ZFS) from 0 to 4wt.%. XRD and FTIR examinations verified the existence and linkages of impregnated composite nanotubes in the modified membranes. Increasing ZFS contents 1-4wt.% enhanced the thermal stability of host membranes up to 17°C in comparison to pristine CA membranes as proclaimed by thermal degrative investigations. Membranes’ performance is evaluated by deionized water flux and sulphate salts (aluminum and copper) rejection capabilities. The prepared membranes are highly effective in salts removal application as evident from 98% of aluminum sulphate rejection that emanates from micro to nano porosity transformation after increasing filler composite into the membrane matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.