Abstract
Microstructural changes and ferrite phase transformation under shock loading, between 8.5 GPa and 17.5 GPa, in a hot-rolled Lean Duplex Stainless Steel (commercially known as LDX 2101) were investigated in as-received and pre-deformed conditions. The latter condition was considered to distinguish classical deformation twins at high strain rates from those associated to the reversible ferrite phase transformation. Plate impact experiments were used to introduce compressive shock loading at peak stresses below and above the stress threshold of the ferrite phase transformation, 13 GPa. Effects of shock loading were also examined by compressing shocked samples quasi-statically and comparing their response with those tested in the as-received condition. The microstructural examinations revealed that the ferrite in LDX 2101 experienced a reversible phase transformation at a peak stress of ~17 GPa. The fingerprints for this transformation were {112}<111> primary twins and {332}<113> primary and secondary twins. In addition, the yield stress of the sample pre-shocked at ~17 GPa showed a considerable increase (⁓150 MPa) compared to the flow stress in as-received conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.