Abstract

Microstructural evolution during the intercritical annealing at 740 and 770 °C for 120-900 s in a low-carbon low-alloy steel from the initial martensitic matrix was studied by electron microscopy equipped with energy dispersive x-ray spectroscopy and x-ray diffraction. It was seen that during the intercritical annealing, the martensitic structure changes to the tempered martensite with carbides. The results depicted that the temperature and time of intercritical annealing influence significantly the distribution and amount of the formed carbides. Two types of austenite morphology were identified to grow simultaneously, i.e., globular and acicular. A longer annealing time led to the coarse globular and thick acicular austenite morphology. The austenite with globular morphology nucleated preferably at prior austenite grain boundary triple and quadruple junctions. The austenite with globular and acicular morphology was developed in Mn-rich and -poor regions, respectively. The globular austenite morphology intensified the banded microstructure of ferrite-martensite dual-phase steel, whereas the acicular austenite morphology led to a more isotropic microstructure. The experimental results illustrated that the intercritical temperature is a significant factor which can contribute to intensify the banded ferrite-martensite microstructure. The volume fractions of austenite with globular and acicular morphology were quantitatively measured. The volume fraction of globular to acicular morphology of austenite was high and low at 770 and 740 °C, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call