Abstract

The ground-state properties of the spin-(1/2, 1) mixed-spin XXZ chain with single-ion anisotropy (D) are investigated by the infinite time-evolving block decimation (iTEBD) method. A ground-state phase diagram including three phases, i.e., a fully polarized phase, an XY phase and a ferrimagnetic phase, is obtained. The ferrimagnetic phase is found to extend to the regions with (Δ > 1, D > 0) and (Δ < 1, D < 0), where Δ denotes the coupling anisotropy between the localized spins. By the discontinuous behavior of bipartite entanglement, quantum phase transitions (QPTs) between the XY phase and the other two phases are verified to be of the first-order. Furthermore, two constant spontaneous magnetization values (Mz = 3/2 and 1/2) are observed in the fully polarized and the ferrimagnetic phases, respectively. In both cases of Δ → +∞ and D → -∞, the ground state tends to the Ising limit. In addition, both the long-range ferromagnetic and antiferromagnetic orders are found to coexist in the whole ferrimagnetic phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call