Abstract

We theoretically and numerically investigate ferrimagnetic domain wall motion driven by damping-like spinorbit torque. We find that the damping-like spin-orbit torque combined with the interfacial Dzyaloshinskii-Moriya interaction efficiently drives the ferrimagnetic domain wall especially at the angular momentum compensation point. We obtain the analytic expression of the domain wall velocity with respect to the current density and the net spin density, which is in agreement with numerical simulation. The analytic expression is applicable to arbitrary compensation conditions, ranging from the ferromagnetic limit to the antiferromagnetic limit, and is thus useful to design and interpret ferrimagnetic domain wall experiments at various temperatures or compositions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.