Abstract

A double-wall cubic metal nanotube consists of the ferromagnetic spin-1 inner shell and spin-3/2 surface shell. It is of the ferrimagnetic exchange coupling between two shells. Considering the single-ion anisotropy and transverse field exist together, the magnetization, the initial susceptibility, the internal energy and the specific heat have been investigated by using the effective-field theory with correlations. Some interesting phenomena have been found in the thermal variations of the system. Magnetization appears two or three compensation points in certain parameters. It is an unconventional ferrimagnetic behavior in the nanotube. The shapes of total magnetization and the initial susceptibility are great influenced by the surface exchange coupling, surface single-ion anisotropy and surface transverse field. Some results of nanotube may have potential applications in different research fields, such as electronics, optics, mechanics, and even biomedicine and molecular devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.