Abstract

Geobacter species such as G. bremensis, G. pelophilus, and G. sulfurreducens are obligately anaerobic and grow in anoxic, non-reduced medium by fast reduction of soluble ferric citrate. In contrast, insoluble ferrihydrite was either only slowly or not reduced when supplied as electron acceptor in similar growth experiments. Ferrihydrite reduction was stimulated by addition of a reducing agent or by concomitant growth of secondary bacteria that were physiologically and phylogenetically as diverse as Escherichia coli, Lactococcus lactis, or Pseudomonas stutzeri. In control experiments with heat-inactivated Geobacter cells and viable secondary bacteria, no ( E. coli, P. stutzeri) or only little ( L. lactis) ferrihydrite was reduced. Redox indicator dyes showed that growing E. coli, P. stutzeri, or L. lactis cells lowered the redox potential of the medium in a similar way as a reducing agent did. The lowered redox potential was presumably the key factor that stimulated ferrihydrite reduction by all three Geobacter species. The observed differences in anoxic non-reduced medium with ferric citrate versus ferrihydrite as electron acceptor indicated that reduction of these electron acceptors involved different cellular components or different biochemical strategies. Furthermore, it appears that redox-sensitive components are involved, and/or that gene expression of components needed for ferrihydrite reduction is controlled by the redox state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call