Abstract

Iron(III) and UVA (320–400 nm) light strongly diminished the transforming activity of Haemophilus influenzae DNA in the presence of oxygen. Iron(III) alone in the absence of light had no measurable effect on the transforming activity. The chelating agent ethylenediaminetetraacetic acid (EDTA) conferred virtually complete protection, but hydroxyl radical scavengers (mannitol, methanol, ethanol, isopropanol and dimethyl sulfoxide) inhibited only a small fraction of the inactivation. Treatment of plasmid DNA (pBR322) with iron(III) results in the conversion of the covalently closed circular form of the plasmid to open circles and ultimately to the linear form. Concomitant with the alteration in the conformation of the plasmid, the ability to transform Escherichia coli was reduced. In model systems, iron(III) photoreacted with the DNA backbone causing nicking and double-strand breakage. The results are consistent with a mechanism involving a preliminary complexation of iron(III) by DNA followed by the generation of reactive free radicals other than ·OH. We suggest that bound iron, or other UV-absorbing transition metal complexes, may be chromophores capable of causing DNA damage in the long-wave near-UV region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.