Abstract

Cardiovascular diseases are a leading cause of mortality and morbidity worldwide. Aberrant thrombosis is a common feature of systemic conditions like diabetes and obesity, and chronic inflammatory diseases like atherosclerosis, cancer, and autoimmune diseases. Upon vascular injury, usually the coagulation system, platelets, and endothelium act in an orchestrated manner to prevent bleeding by forming a clot at the site of the injury. Abnormalities in this process lead to either excessive bleeding or uncontrolled thrombosis/insufficient antithrombotic activity, which translates into vessel occlusion and its sequelae. The FeCl3-induced carotid injury model is a valuable tool in probing how thrombosis initiates and progresses in vivo. This model involves endothelial damage/denudation and subsequent clot formation at the injured site. It provides a highly sensitive, quantitative assay to monitor vascular damage and clot formation in response to different degrees of vascular damage. Once optimized, this standard technique can be used to study the molecular mechanisms underlying thrombosis, as well as the ultrastructural changes in platelets in a growing thrombus. This assay is also useful to study the efficacy of antithrombotic and antiplatelet agents. This article explains how to initiate and monitor FeCl3-induced arterial thrombosis and how to collect samples for analysis by electron microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.