Abstract

We tested the hypothesis that ferredoxin (Fd) limits the activity of cyclic electron flow around PSI (CEF-PSI) in vivo and that the relief of this limitation promotes the non-photochemical quenching (NPQ) of Chl fluorescence. In transplastomic tobacco (Nicotiana tabacum cv Xanthi) expressing Fd from Arabidopsis (Arabidopsis thaliana) in its chloroplasts, the minimum yield (F(o)) of Chl fluorescence was higher than in the wild type. F(o) was suppressed to the wild-type level upon illumination with far-red light, implying that the transfer of electrons by Fd-quinone oxidoreductase (FQR) from the chloroplast stroma to plastoquinone was enhanced in transplastomic plants. The activity of CEF-PSI became higher in transplastomic than in wild-type plants under conditions limiting photosynthetic linear electron flow. Similarly, the NPQ of Chl fluorescence was enhanced in transplastomic plants. On the other hand, pool sizes of the pigments of the xanthophyll cycle and the amounts of PsbS protein were the same in all plants. All these results supported the hypothesis strongly. We conclude that breeding plants with an NPQ of Chl fluorescence increased by an enhancement of CEF-PSI activity might lead to improved tolerance for abiotic stresses, particularly under conditions of low light use efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.