Abstract

This paper presents oxidation of polychlorinated diphenyl sulfides (PCDPSs), dioxin-like compounds, by ferrate(VI) (FeVIO42−, Fe(VI)). Kinetics of the reactions of Fe(VI) with seventeen PCDPSs, differ in number and positions of chlorine atoms (from 2 to 7), were investigated at pH 8.0. The second-order rate constants (k, M−1 s−1) of the reactions varied with the numbers and positions of chlorine atoms and appeared to be related with standard Gibbs free energy of formation (ΔfG0) of PCDPSs. Degradation experiments in the presence of ions and humic acid demonstrated complete removal of PeCDPS by Fe(VI) in minutes. Pathways of the reaction were investigated by identifying oxidized products (OPs) of the reaction between Fe(VI) and 2,2′,3’,4,5-pentachlorodiphenyl sulfide (PeCDPS) at pH 8.0. Pathways of oxidation involved major pathway of attack on sulfur(II) by Fe(VI) in steps to yield sulfoxide type products, and subsequent breakage of C-S bond with the formation of sulfonic acid-containing trichloro compound. Minor pathways were hydroxylation of benzene ring and substitution of chlorine atom with hydroxyl group. Estimation of toxicity of OPs of the oxidation of PeCDPS by Fe(VI) suggested the decreased toxicity from the parent contaminant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call