Abstract

Ferrate(VI) (Fe(VI)) is a promising oxidant coagulant and disinfectant for the degradation of organic micropollutants. However, it is hard to elucidate the detailed oxidation mechanism through the current experimental approaches. Substituted anilines (SANs) are important chemical compounds that are widely used in many industries. This paper presents the use of density functional theory (DFT) to understand the oxidation mechanism of SANs by Fe(VI) and the effect of substituents. The calculation results revealed that the primary oxidations of SANs follow the hydrogen atom transfer (HAT) mechanism. Interestingly, the hydroxyl oxygen of HFeO4– is more reactive than the carbonyl oxygen when reacting with SANs. The formation of the SAN radical is crucial, and all of the products are formed from it. Azobenzene is more favorable to generate the above products. In addition, the obtained results indicate that this kind of substituent has a much greater influence on the reaction rather than the position. Thus, the present study provides a valuable insight into the transformation pathways of SANs in the Fe(VI) oxidation process and the effects of the substituent on oxidation. These results will advance the understanding of Fe(VI) involved in wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.