Abstract

Ferrate(vi) is an efficient and environmentally friendly oxidant for the degradation of organic micropollutants. However, the related mechanism for the degradation is ambiguous and can hardly be elucidated empirically due to the rapid oxidation process and unstable intermediates for experimental trapping. Herein we performed density function theory (DFT) calculations to unveil the mechanism of ferrate(vi)-mediated degradation, taking sulfamethoxazole as a model compound. The results show that nucleophilic attack (rather than electrophilic attack) of HFeO4- on the isoxazole moiety of sulfamethoxazole initiates the subsequent degradations, and ferrate(vi) rather than the water molecule provides O atoms for the oxidation of the nitroso group and isoxazole moiety. Electron delocalization from the Fe atom to the isoxazole moiety is crucial for the ring-opening of isoxazole, and organometallic intermediates suggested previously are not the necessary ones in the oxidation of sulfamethoxazole by HFeO4-. Thus, this study has theoretically clarified the ferrate(vi) oxidation mechanisms for a representative sulfonamide, which were also partially corroborated by the intermediates and products observed in the previous experimental studies for phosphite and tryptophan. This study provides an exemplification on the application of quantum chemical calculations to clarify the degradation pathways of organic micropollutants, which is important for the prediction of degradation products needed in their engineering design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.