Abstract
ABSTRACT Extracellular ATP (eATP) orchestrates vital processes in plants, akin to its role in animals. P2K1 is a crucial receptor mediating eATP effects. Immunoprecipitation tandem mass spectrometry data highlighted FERONIA’s significant interaction with P2K1, driving us to explore its role in eATP signaling. Here, we investigated putative P2K1-interactor, FERONIA, which is a versatile receptor kinase pivotal in growth and stress responses. We employed a FERONIA loss-of-function mutant, fer-4, to dissect its effects on eATP signaling. Interestingly, fer-4 showed distinct calcium responses compared to wild type, while eATP-responsive genes were constitutively upregulated in fer-4. Additionally, fer-4 displayed insensitivity to eATP-regulated root growth and reduced cell wall accumulation. Together, these results uncover a role for FERONIA in regulating eATP signaling. Overall, our study deepens our understanding of eATP signaling, revealing the intricate interplay between P2K1 and FERONIA impacting the interface between growth and defense.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.