Abstract

In this paper the detailed CCWZ procedure for introducing fermions on the world sheet of a string propagating in flat space-time is presented. The theory of nonlinear realizations is used to derive the transformation as well as the interactions of fermionic matter fields under arbitrary spinorial representations of the unbroken subgroup. This demonstrates that even for non-supersymmetric spinors, the interactions are still severely restricted by the nonlinearly realized symmetry. We also explain how supersymmetric models provide an example for this construction with Goldstinos as matter fields, and how one can use the $\kappa$-symmetry of the Green Schwarz action in particular, to verify this nonlinear transformation for a specific matter field representation. We finally restrict the target space dimension without reference to supersymmetry, but rather by imposing one-loop integrability on a fermionic string that nonlinearly realizes Poincare symmetry. This singles out the critical dimension $D=10$ for heterotic, GS and RNS supersymmetric strings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.