Abstract
We study spin and super-modular categories systematically as inspired by fermionic topological phases of matter, which are always fermion parity enriched and modelled by spin topological quantum field theories at low energy. We formulate a 16-fold way conjecture for the minimal modular extensions of super-modular categories to spin modular categories, which is a categorical formulation of gauging the fermion parity. We investigate general properties of super-modular categories such as fermions in twisted Drinfeld doubles, Verlinde formulas for naive quotients, and explicit extensions of PSU(2)4m+2 with an eye towards a classification of the low-rank cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.